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Introduction
This article is intended to serve as a “road map” for outlining typical steps to be
considered in meeting the bandwidth, power, and error-performance requirements
of a digital communication system. The criteria for choosing modulation and
coding schemes, based on whether a system is bandwidth-limited or power-limited,
are reviewed for several system examples, and the article emphasizes the subtle but
straightforward relationships that exist when transforming from data bits to
channel bits to symbols to chips.

The design of any digital communication system begins with a description of the
channel (received power, available bandwidth, noise statistics and other
impairments, such as fading), and a definition of the system requirements (data rate
and error performance). Given the channel description, we need to determine
design choices that best match the channel and meet the performance requirements.
An orderly set of transformations and computations has evolved to aid in
characterizing a system’s performance. This article examines three system
examples: a bandwidth-limited uncoded system, a power-limited uncoded system,
and a bandwidth-limited and power-limited coded system. We deal with real-time
communication systems, in which the term coded (or uncoded) refers to the
presence (or absence) of error-correction coding schemes involving the use of
redundant bits and expanded bandwidth.

Two primary communications resources are the received power and the available
transmission bandwidth. In many communication systems, one of these resources
may be more precious than the other, and hence most systems can be classified as
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either bandwidth-limited or power-limited. In bandwidth-limited systems,
spectrally-efficient modulation techniques can be used to save bandwidth at the
expense of power, whereas, in power-limited systems, power-efficient modulation
techniques can be used to save power at the expense of bandwidth. In systems that
are both bandwidth-limited and power-limited, error-correction coding (often
called channel coding) can be used to save power or to improve error performance
at the expense of bandwidth. Trellis-coded modulation (TCM) schemes can be
used to improve the error performance of bandwidth-limited channels without any
increase in bandwidth [1], but such schemes are not covered in this article.

The Bandwidth Efficiency Plane
Figure 1 shows a plot of bandwidth efficiency. The abscissa is the ratio of bit
energy to noise-power spectral density, Eb/N0, in decibels. The ordinate is the ratio
of throughput, R in bit/s, that can be transmitted per hertz in a given bandwidth, W.
The ratio R/W is called bandwidth efficiency, since its value reflects how efficiently
the bandwidth resource is utilized. The plot in Figure 1 stems from the Shannon-
Hartley Capacity Theorem [2-4], which can be stated as follows:

2 1log SC  =  W   +  
N

 
  

(1)

where S/N is the ratio of received average signal power to noise power. When the
logarithm is taken to the base 2, as shown, the capacity, C, is given in bit/s. The
capacity of a channel defines the maximum number of bits that can be reliably sent
per second over the channel. For the case where the data (information) rate, R, is
equal to C, the curve separates a region of practical communication systems from a
region where communication systems cannot operate reliably [3,4].
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Figure 1
Bandwidth efficiency versus Eb/N0.
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M-ary Signaling
For signaling schemes that process k bits at a time, the signaling is called M-ary.
Each symbol in an M-ary alphabet can be related to a unique sequence of k bits,

M = 2k     or     k = log2 M (2)

where M is the size of the alphabet. In the case of digital transmission, the term
symbol refers to the member of the M-ary alphabet that is transmitted during each
symbol duration, Ts. To transmit the symbol, it must be mapped onto an electrical
voltage or current waveform. Because the transmission waveform represents the
transmission symbol, the terms symbol and waveform are sometimes used
interchangeably. Since one of M symbols or waveforms is transmitted during each
symbol duration, Ts, the data rate, R in bit/s, can be expressed as follows:

2log

s s

 MkR              
T T

= = bit/s (3)

From Equation (3), we write that the effective time duration, Tb, of each bit in terms
of the symbol duration, Ts, or the symbol rate, Rs, is

1 1s
b

s

TT                 
R k k R

= = = (4)

Then, using Equations (3) and (4), we can express the symbol rate, Rs, in terms of
the bit rate, R, as

2logs
RR           
 M

= (5)

From Equations (3) and (4), it can be seen that any digital scheme that transmits
k = (log2 M) bits in Ts seconds, using a bandwidth of W Hz, operates at a bandwidth
efficiency of

2 log 1              
  bs

MR
W W T W T

= = bits/s/Hz (6)

where Tb is the effective time duration of each data bit.
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Bandwidth-Limited Systems
From Equation (6), it can be seen that any digital communication system will
become more bandwidth efficient as its WTb product is decreased. Thus, signals
with small WTb products are often used with bandwidth-limited systems. For
example, the Global System for Mobile (GSM) Communication uses Gaussian
minimum shift keying (GMSK) modulation having a WTb product equal to 0.3
Hz/bit/s [5], where W is the 3-dB bandwidth of a Gaussian filter.

For uncoded bandwidth-limited systems, the objective is to maximize the
transmitted information rate within the allowable bandwidth, at the expense of
Eb/N0 (while maintaining a specified value of bit-error probability, PB). On the
bandwidth-efficiency plane of Figure 1 are plotted the operating points for coherent
M-ary PSK (MPSK) at PB = 10-5. We will assume Nyquist (ideal rectangular)
filtering at baseband [6], so that, for MPSK, the required double-sideband (DSB)
bandwidth at an intermediate frequency (IF) is related to the symbol rate as follows

1
s

s
W       RT

= = (7)

where Ts is the symbol duration and Rs is the symbol rate. The use of Nyquist
filtering results in the minimum required transmission bandwidth that yields zero
intersymbol interference; such ideal filtering gives rise to the name Nyquist
minimum bandwidth. Note that the bandwidth of nonorthogonal signaling, such as
MPSK or MQAM, does not depend on the density of the signaling points in the
constellation—only on the speed of signaling. When a phasor is transmitted, the
system cannot distinguish as to whether that signal arose from a sparse alphabet set
or a dense alphabet set. It is this aspect of nonorthogonal signals that allows us to
pack the signaling space densely and thus achieve improved bandwidth efficiency
at the expense of power. From Equations (6) and (7), the bandwidth efficiency of
MPSK modulated signals using Nyquist filtering can be expressed as follows:

2log
R      M     
W

= bits/s/Hz (8)

The MPSK points plotted in Figure 1 confirm the relationship shown in Equation
(8). Note that MPSK modulation is a bandwidth-efficient scheme. As M increases
in value, R/W also increases. From Figure 1, it can be verified that MPSK modulation
can achieve improved bandwidth efficiency at the cost of increased Eb/N0. Many
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highly bandwidth-efficient modulation schemes have been investigated [7], but such
schemes are beyond the scope of this article.

Two regions, the bandwidth-limited region and the power-limited region, are
shown on the bandwidth-efficiency plane of Figure 1. Notice that the desirable
tradeoffs associated with each of these regions are not equitable. For the
bandwidth-limited region, large R/W is desired; however, as Eb/N0 is increased, the
capacity boundary curve flattens out and ever-increasing amounts of additional
Eb/N0 are required to achieve improvement in R/W. A similar relationship is at
work in the power-limited region. Here, a savings in Eb/N0 is desired, but the
capacity boundary curve is steep; to achieve a small reduction in required Eb/N0
requires a large reduction in R/W.

Power-Limited Systems
For the case of power-limited systems in which power is scarce but system
bandwidth is available (for example, a space communication link), the following
tradeoffs are possible: (1) improved PB at the expense of bandwidth for a fixed
Eb/N0; or (2) reduction in Eb/N0 at the expense of bandwidth for a fixed PB. A
“natural” modulation choice for a power-limited system is M-ary FSK (MFSK).
Plotted on Figure 1 are the operating points for noncoherent orthogonal MFSK
modulation at PB = 10-5. For MFSK, the IF minimum bandwidth is given by

s
s

MW        M R
T

= = (9)

where Ts is the symbol duration and Rs is the symbol rate. With MFSK, the
required transmission bandwidth is expanded M-fold over binary FSK, since there
are M different orthogonal waveforms, each requiring a bandwidth of 1/TS. Thus,
from Equations (6) and (9), the bandwidth efficiency of noncoherent MFSK
signals can be expressed as follows:

2log   MR          
W M

= bits/s/Hz (10)

The MFSK points plotted in Figure 1 confirm the relationship shown in Equation
(10). Note that orthogonal signaling, such as MFSK modulation, is a bandwidth-
expansive scheme. As M increases, R/W decreases. From Figure 1, it can be seen
that MFSK modulation can be used for realizing a reduction in required Eb/N0 at the
cost of increased bandwidth.
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It is important to emphasize that in Equations (7) and (8) for MPSK, and for all the
MPSK points plotted in Figure 1, Nyquist (ideal rectangular) filtering has been
assumed. Such filters are not realizable. For realistic channels and waveforms, the
required transmission bandwidth must be increased in order to account for
realizable filters. In each of the examples that follow, we consider radio channels,
disturbed only by additive white Gaussian noise (AWGN), and having no other
impairments. For simplicity, the modulation choice is limited to constant-envelope
types—either MPSK or noncoherent orthogonal MFSK. Thus, for an uncoded
system, if the channel is bandwidth-limited, MPSK is selected, and if the channel is
power-limited, MFSK is selected. Note that, when error-correction coding is
considered, modulation selection is more complex, because some coding
techniques [8] can provide power/bandwidth tradeoffs more effectively than would
be possible through the use of any M-ary modulation scheme.

Note, that in the most general sense, M-ary signaling can be regarded as a
waveform-coding procedure. That is, whenever we select an M-ary modulation
technique instead of a binary one, we in effect have replaced the binary waveforms
with better waveforms − either better for bandwidth performance (MPSK), or
better for power performance (MFSK). Even though orthogonal MFSK signaling
can be thought of as being a coded system (it can be described as a first-order
Reed-Muller code [9]), we shall here restrict our use of the term coded system to
refer only to those traditional error-correction codes using redundancies, such as
block codes or convolutional codes.

Requirements for MPSK and MFSK Signaling
The basic relationship between the symbol (or waveform) transmission rate, Rs,
and the data rate, R, was shown in Equation (5) to be as follows:

2logs
R    R  M

=

Using this relationship together with Equations (6) through (10), and a given data
rate of R = 9600 bit/s, Table 1 has been compiled [4]. The table is a summary of
symbol rate, minimum bandwidth, and bandwidth efficiency for MPSK and
noncoherent orthogonal MFSK, for the values of M = 2, 4, 8, 16, and 32. Table 1
also includes the required values of Eb/N0 to achieve a bit-error probability of 10-5

for MPSK and MFSK for each value of M shown. These Eb/N0 entries were
computed using relationships that are presented later in this article. The Eb/N0
entries corroborate the tradeoffs shown in Figure 1. As M increases, MPSK
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signaling provides more bandwidth efficiency at the cost of increased Eb/N0, while
MFSK signaling allows for a reduction in Eb/N0 at the cost of increased bandwidth.
The next three sections are presented in the context of examples taken from Table
1.

Table 1
Symbol Rate, Minimum Bandwidth,

Bandwidth Efficiency, and Required Eb/N0 for MPSK
and Noncoherent Orthogonal MFSK Signaling at 9600 bit/s

M k
R

(bit/s)
Rs

(symb/s)

MPSK
Minimum
Bandwidth

(Hz)

MPS
K

R/W

MPSK
Eb/N0
(dB)

PB = 10-5

Noncoherent
Orthogonal
MFSK Min
Bandwidth

(Hz)

MFS
K

R/W

MFSK
Eb/N0
(dB)

PB = 10-5

2 1 9600 9600 9600 1 9.6 19,200 1/2 13.4
4 2 9600 4800 4800 2 9.6 19,200 1/2 10.6
8 3 9600 3200 3200 3 13.0 25,600 1/3 9.1

16 4 9600 2400 2400 4 17.5 38,400 1/4 8.1
32 5 9600 1920 1920 5 22.4 61,440 5/32 7.4

Example 1: Bandwidth-Limited Uncoded System
Suppose we are given a bandwidth-limited AWGN radio channel with an available
bandwidth of W = 4000 Hz. Also, consider that the link constraints (transmitter
power, antenna gains, path loss, and so on) result in the ratio of received signal
power to noise-power spectral density, Pr/N0, being equal to 53 dB-Hz. Let the
required data rate, R, be equal to 9600 bit/s, and let the required bit-error
performance, PB, be at most 10-5. The goal is to choose a modulation scheme that
meets the required performance. In general, an error-correction coding scheme may
be needed if none of the allowable modulation schemes can meet the requirements.
However, in this example, we will see that the use of error-correction coding is
unnecessary.

For any digital communication system, the relationship between received power to
noise-power spectral density, Pr/N0, and received bit-energy to noise-power spectral
density, Eb/N0, can be shown [4] to be the following:

0 0

r bP E  =    R     
N N

(11)
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Solving for Eb/N0 in decibels, we obtain this:

0

bE  
N

(dB) = 
0

rP    
N

(dB-Hz)  -R  (dB-bit/s) (12)

= 53 dB-Hz - (10 × log109600) dB-bit/s = 13.2 dB (or 20.89)

Since the required data rate of 9600 bit/s is much larger than the available
bandwidth of 4000 Hz, the channel can be described as bandwidth-limited. We
therefore select MPSK as our modulation scheme. Remember that we have
confined the possible modulation choices to be constant-envelope types; without
such a restriction, it would be possible to select a modulation type with greater
bandwidth-efficiency. In an effort to conserve power, we next compute the
smallest possible value of M such that the symbol rate is at most equal to the
available bandwidth of 4000 Hz. From Table 1, it is clear that the smallest value of
M meeting this requirement is M = 8. Our next task is to determine whether the
required bit-error performance of PB ≤ 10-5 can be met by using 8-PSK modulation
alone, or whether it is necessary to also use an error-correction coding scheme. From
Table 1, it can be seen that 8-PSK alone will meet the requirements, since the
required Eb/N0 listed for 8-PSK is less than the received Eb/N0 that was calculated in
Equation (12). However, imagine that we do not have Table 1. Let’s see how to
evaluate whether error-correction coding is necessary.

Figure 2 shows the basic modulator/demodulator (MODEM) block diagram
summarizing the functional details of this design. At the modulator, the
transformation from data bits to symbols yields an output symbol rate Rs, that is a
factor (log2 M) smaller than the input data-bit rate R, as is seen in Equation (5).

Similarly, at the input to the demodulator, the symbol-energy to noise-power spectral
density ES/N0 is a factor (log2 M) larger than Eb/N0, since each symbol is made up of
(log2 M) bits. Because ES/N0 is larger than Eb/N0 by the same factor that Rs is smaller
than R, we can expand Equation (11) as follows:

0 0 0

br s
s

P EE  =    R  =    R     
N N N

(13)

The demodulator receives a waveform (in this example, one of M = 8 possible
phase shifts) during each time interval Ts. The probability that the demodulator
makes a symbol error, PE (M), is well approximated by [10].
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0

2( ) 2 sins
E

EP M     Q         
N M

 π ≈     
      for M > 2 (14)

where Q(x), the complementary error function, is defined as [4] follows:

2

exp
1( )
2 2x   duQ x        u∞=

π
−

 
∫   

(15)

A good approximation for Q(x), valid for x > 3, is

1( ) exp 2
2xQ x         

x  
 
   

≈ −
2π

(16)

In Figure 2 and all the figures that follow, rather than show explicit probability
relationships, the generalized notation f(x) is used to indicate some functional
dependence on x.

Figure 2
Basic modulator/demodulator (MODEM) without channel coding.
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A traditional way of characterizing communication (power) efficiency or error
performance in digital systems is in terms of the received Eb/N0 in decibels. This
Eb/N0 description has become standard practice. However, recall that at the input to
the demodulator/detector, there are no bits; there are only waveforms that have
been assigned bit meanings. Thus, the received Eb/N0 value represents a bit-
apportionment of the arriving waveform energy. A more precise (but unwieldy)
name would be the energy per effective bit versus N0. To solve for PE(M) in
Equation (14), we first need to compute the ratio of received symbol-energy to
noise-power spectral density, ES/N0. Since from Equation (12), Eb/N0 = 13.2 dB (or
20.89), and because each symbol is made up of (log2 M) bits, we compute, with
M = 8:

2
0 0

( ) 3 20.89 62.67logs bEE      M            
N N

= = × = (17)

Using the results of Equation (17) in Equation (14) yields the symbol-error
probability, PE = 2.2 × 10-5. To transform this to bit-error probability, we need to
use the relationship between bit-error probability PB and symbol-error probability
PE, for multiple-phase signaling [9], as follows:

2log
E

B
PP     
  M

≈         for  PE  « 1 (18)

which is a good approximation, when Gray coding [10] is used for the bit-to-
symbol assignment. This last computation yields PB = 7.3 × 10-6, which meets the
required bit-error performance. Thus, in this example, no error-correction coding is
necessary and 8-PSK modulation represents the design choice to meet the
requirements of the bandwidth-limited channel (which we had predicted by
examining the required Eb/N0 values in Table 1).

Example 2: Power-Limited Uncoded System
Now, suppose that we have the same data rate and bit-error probability
requirements as in the bandwidth-limited example. However, in this example, let
the available bandwidth, W, be equal to 45 kHz, and let the available Pr/N0 be equal
to 48 dB-Hz. As before, the goal is to choose a modulation or modulation/coding
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scheme that yields the required performance. In this example, we will again find that
error-correction coding is not required. The channel in this example is clearly not
bandwidth-limited, since the available bandwidth of 45 kHz is more than adequate
for supporting the required data rate of 9600 bit/s. The received Eb/N0 is found from
Equation (11), as follows:

0

bE  
N

(dB) = 48 dB-Hz - (10 × log10 9600) dB-bit/s = 8.2 dB (or 6.61) (19)

Since there is abundant bandwidth but a relatively small amount of Eb/N0 for the
required bit-error probability, this channel may be referred to as power-limited. We
therefore choose MFSK as the modulation scheme. In an effort to conserve power,
we next search for the largest possible M such that the MFSK minimum bandwidth
is not expanded beyond our available bandwidth of 45 kHz. From Table 1, we see
that such a search results in the choice of M = 16. Our next task is to determine
whether the required error performance of PB ≤ 10-5 can be met by using 16-FSK
alone, without the use of any error-correction coding. Similar to the previous
example, Table 1 shows that 16-FSK alone will meet the requirements, since the
required Eb/N0 listed for 16-FSK is less than the received Eb/N0 that was calculated
in Equation (19). However, imagine again that we do not have Table 1. Let’s see
how to evaluate whether error-correction coding is necessary.

As before, the block diagram in Figure 2 summarizes the relationship between
symbol rate Rs and bit rate R, and between ES/N0 and Eb/N0, which is identical to each
of the respective relationships in the previous bandwidth-limited example. In this
example, the 16-FSK demodulator receives a waveform (one of 16 possible
frequencies) during each symbol-time interval TS. For noncoherent MFSK, the
probability that the demodulator makes a symbol error, PE(M), is approximated by the
following upper bound [11]:

0

1( ) exp
2 2

s
E

M  EP M        
N

 −≤ − 
 

(20)

To solve for PE(M) in Equation (20), we need to compute ES/N0, as we did in
Example 1. Using the results of Equation (19) in Equation (17), with M = 16, we
get this:

ADMIN
Zvýraznenie

ADMIN
Čiara

ADMIN
Zvýraznenie

ADMIN
Čiara

ADMIN
Čiara

ADMIN
Čiara

ADMIN
Obdĺžnik



Designing Digital Communications Systems 13

2
0 0

( ) 4 6.61 26.44logs bEE       M            
N N

= = × = (21)

Next, using the results of Equation (21) in Equation (20) yields the symbol-error
probability PE = 1.4 × 10-5. To transform this to bit-error probability, PB, we need
to use the relationship between PB and PE for orthogonal signaling [11], given by

-12
-12

k

B EkP     P
  

= (22)

This last computation yields PB = 7.3 × 10-6, which meets the required bit-error
performance. Thus, we can meet the given specifications for this power-limited
channel by using 16-FSK modulation, without any need for error-correction coding
(which we had predicted by examining the required Eb/N0 values in Table 1).

Example 3: Bandwidth-Limited and Power-Limited Coded System
In this example, we start with the same channel parameters as in the bandwidth-
limited example, namely, W = 4000 Hz, Pr/N0 = 53 dB-Hz, and R = 9600 bit/s, with
one exception. In the present example, we specify that the bit-error probability
must be at most 10-9. Since the available bandwidth is 4000 Hz, and from Equation
(12) the available Eb/N0 is 13.2 dB, it should be clear from Table 1 that the system
is both bandwidth-limited and power-limited. (8-PSK is the only possible choice to
meet the bandwidth constraint; however, the available Eb/N0 of 13.2 dB is certainly
insufficient to meet the required bit-error probability of 10-9.) For such a small
value of PB, the system shown in Figure 2 will obviously be inadequate, and we
need to consider the performance improvement that error-correction coding (within
the available bandwidth) can provide. In general, you can use convolutional codes
or block codes. To simplify the explanation, we will choose a block code. The
Bose, Chaudhuri, and Hocquenghem (BCH) codes form a large class of powerful
error-correcting cyclic (block) codes [12]. For this example, let’s select one of the
codes from this family of codes. Table 2 presents a partial catalog of the available
BCH codes in terms of n, k, and t, where k represents the number of information or
data bits that the code transforms into a longer block of n code bits (also called
channel bits or channel symbols), and t represents the largest number of incorrect
channel bits that the code can correct within each n-sized block. The rate of a code
is defined as the ratio k/n; its inverse represents a measure of the code’s
redundancy.
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Table 2
BCH Codes (Partial Catalog)

n k t
7 4 1
15 11 1

7 2
5 3

31 26 1
21 2
16 3
11 5

63 57 1
51 2
45 3
39 4
36 5
30 6

127 120 1
113 2
106 3
99 4
92 5
85 6
78 7
71 9
64 10
57 11
50 13
43 14
36 15
29 21
22 23
15 27
8 31

Since this example is represented by the same bandwidth-limited parameters that
were given in the first example, we start with the same 8-PSK modulation as before
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in order to meet the stated bandwidth constraint. However, we now also need to
employ error-correction coding so that the bit-error probability can be lowered to
PB ≤ 10-9. To make the optimum code selection from Table 2, we are guided by the
following goals:

1. The undetected bit-error probability of the combined modulation/coding
system must meet the system error requirement.

2. The rate of the code must not expand the required transmission bandwidth
beyond the available channel bandwidth.

3. The code should be as simple as possible. Generally, the shorter the code,
the simpler its implementation.

The uncoded 8-PSK minimum bandwidth requirement is 3200 Hz (see Table 1)
and the allowable channel bandwidth is specified as 4000 Hz. Therefore, the
uncoded signal bandwidth may be increased by no more than a factor of 1.25 (or
an expansion of 25%). Thus, the very first step in this (simplified) code-selection
example is to eliminate the candidates from Table 2 that would expand the
bandwidth by more than 25%. The remaining entries in Table 2 form a much
reduced set of “bandwidth-compatible” codes, which have been listed in Table 3.

In Table 3, a column designated Coding Gain, G (for MPSK at PB = 10-9), has been
added, where coding gain in decibels is defined as follows:

G (dB)
0 uncoded

bE     
N

 
=  

 
(dB)

0 coded

bE        
N

 
−  

 
(dB) (23)

From Equation (23), coding gain can be described as a measure of the reduction in
the required Eb/N0 (in decibels) that needs to be provided, due to the error-
performance properties of the channel coding. Coding gain is a function of the
particular code and modulation types used, and the bit-error probability. In Table 3,
the coding gain, G, has been computed for MPSK at PB = 10-9. For MPSK
modulation, G is relatively independent of the value of M. Thus, for a particular
bit-error probability, a given code will provide approximately the same coding gain
when used with any of the MPSK modulation schemes. The coding gains in Table
3 were calculated using a procedure outlined under the later section “Calculating
Coding Gain.”
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Table 3
Bandwidth-Compatible BCH Codes

n k t
Coding Gain, G

(dB)
MPSK, PB = 10-9

31 26 1 2.0
63 57 1 2.2

51 2 3.1
127 120 1 2.2

113 2 3.3
106 3 3.9

Figure 3 shows a block diagram that summarizes the details of this system
containing both modulation and coding. Compare Figure 3 with Figure 2; the
introduction of the encoder/decoder blocks has brought about additional
transformations. At the encoder/modulator, in Figure 3, the relationships are shown
that exist when transforming from R bit/s to Rc channel-bit/s to RS symbol/s.

Figure 3
Modem with channel coding.

We assume that our communication system is a real-time system and thus cannot
tolerate any message delay. Therefore, the channel-bit rate, Rc, must exceed the
data-bit rate, R, by the factor n/k. Further, each transmission symbol is made up of
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(log2 M) channel bits, so the symbol rate, RS, is less than Rc by the factor (log2 M). For
a system containing both modulation and coding, we summarize the rate
transformations as follows:

c
n  =    RR k

 
  

(24)

2log
c

s
R    R   M

= (25)

At the demodulator/decoder, in Figure 3, the transformations among data-bit
energy, channel-bit energy, and symbol energy are related (in a reciprocal fashion)
by the same factors as shown among the rate transformations in Equations (24) and
(25). Since the encoding transformation has replaced k data bits with n channel
bits, the ratio of channel-bit energy to noise-power spectral density, Ec/N0, is
computed by decrementing the value of Eb/N0 by the factor k/n. Also, since each
transmission symbol is made up of (log2 M) channel bits, ES/N0, which is needed in
Equation (14) to solve for PE, is computed by incrementing Ec/N0 by the factor
(log2 M). For a system containing both modulation and coding, we summarize the
energy to noise-power spectral density transformations as follows:

0 0

c bkE E      
nN N

 =   
(26)

2
0 0

( )logs cE E      M   
N N

= (27)

Therefore, using Equations (24) through (27), we can now expand the expression
for Pr/N0 in Equation (13) as follows:

0 0 0 0

b c sr
c s

P E E E      R                  R R
N N N N

= = = (28)

As before, a standard way of describing the link is in terms of the received Eb/N0 in
decibels. However, there are no data bits at the input to the demodulator/detector;
neither are there any channel bits. There are only waveforms (transmission
symbols) that have bit meanings, and thus the waveforms can be described in terms
of bit-energy apportionments. Equation (28) illustrates that the predetection point
in the receiver is a useful reference point at which we can relate the effective
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energy and the effective speed of various parameters of interest. We use the word
“effective” because the only type of signals that actually appear at the predetection
point are waveforms (transformed to baseband pulses) that we call symbols. Of
course, these symbols are related to channel bits, which in turn are related to data
bits. To emphasize the point that Equation (28) represents a useful kind of
“bookkeeping,” consider a system in which a stream of some number of bits, say
273 bits, appears so repeatedly as a module that we give this group of 273 bits a
name; we call it a “chunk.” Engineers do that all the time—for example, eight bits
are referred to as a byte. The moment we identify this new entity, the chunk, it can
immediately be related to the parameters in Equation (28), since Pr /N0 will now
also equal the energy in a chunk over N0, times the chunk rate.

Since Pr/N0 and R were given as 53 dB-Hz and 9600 bit/s, respectively, we find as
before from Equation (12) that the received Eb/N0 = 13.2 dB. Note that the received
Eb/N0 is fixed and independent of the code parameters n and k, and the modulation
parameter M. As we search in Table 3 for the ideal code that will meet the
specifications, we can iteratively repeat the computations that are summarized in
Figure 3. It might be useful to program on a PC (or calculator) the following four
steps as a function of n, k, and t. Step 1 starts by combining Equations (26) and
(27), as follows:

Step 1: 2 2
0 0 0

( ) ( )log logc bs EE E k   M      M    
N N n N

 = =   
(29)

Step 2:
0

2( ) 2 sinE
sEP M     Q     

N M
 π ≈     

(30)

The expression in step 2 is the approximation (for M-ary PSK) for symbol-error
probability, PE, rewritten from Equation (14). At each symbol-time interval, the
demodulator makes a symbol decision, but it delivers to the decoder a channel-bit
sequence representing that symbol. When the channel-bit output of the
demodulator is quantized to two levels, denoted by 1 and 0, the demodulator is said
to make hard decisions. When the output is quantized to more than two levels, the
demodulator is said to make soft decisions. Throughout this section, hard-decision
demodulation is assumed.

Now that a decoder block is present in the system, we designate the channel-bit-
error probability out of the demodulator and into the decoder as Pc, and reserve the
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notation PB for the bit-error probability out of the decoder (the decoded bit-error
probability). Equation (18) is rewritten in terms of Pc as follows:

Step 3:
2log
E

c
Pp     
  M

≈         for PE  « 1 (31)

Relating the channel-bit-error probability to the symbol-error probability out of the
demodulator, assuming Gray coding, as referenced in Equation (18).

For a real-time communication system, using traditional channel-coding schemes,
and a given value of received Pr/N0, the value of ES/N0 with coding will always be
less than the value of ES/N0 without coding. Since the demodulator, with coding,
receives less ES/N0, it makes more errors! However, when coding is used, the system
error-performance doesn’t depend only on the performance of the demodulator; it also
depends on the performance of the decoder. Thus, for error-performance
improvement due to coding, we require that the decoder provide enough error
correction to more than compensate for the poor performance of the demodulator.
The final output decoded bit-error probability, PB, depends on the particular code,
the decoder, and the channel-bit-error probability, Pc. It can be expressed [13] by the
following approximation:

Step 4: -

1

1 (1- )
n

j n j
B c c

j t

n
P          j     p p

jn = +

 
≈  

 
∑ (32)

where t is the largest number of channel bits that the code can correct within each
block of n bits. Using Equations (29) through (32) in the above four steps, the
decoded bit-error probability, PB, can be computed as a function of n, k, and t for
each of the codes listed in Table 3. The entry that meets the stated error requirement
with the largest possible code rate and the smallest value of n is the double-error-
correcting (63, 51) code. The computations are as follows:

Step 1:
0

513 20.89 50.73
63

sE               
N

 = =  

where M = 8, and the received Eb/N0 = 13.2 dB (or 20.89).

Step 2: 42 101.5 sin 2 (3.86) 1.2 10
8EP   Q        Q     −π  ≈ × = = ×    

ADMIN
Obdĺžnik
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Step 3:
-4

-51.2 10 4 10
3c

              p ×≈ = ×

Step 4: 3 60-5 -5633 (4 (1- 4) )10 10363BP                      
≈ × × 

 

4 59-5 -5634 (4 (1- 4 ...) )10 10463
                                + × × + 

 

101.2 10           −= ×

where the bit-error-correcting capability of the code is t = 2. For the computation
of PB in Step 4, only the first two terms in the summation of Equation (32) have
been used, since the other terms have a vanishingly small effect on the result
whenever Pc is small or Eb/N0 reasonably large. When performing this computation
with a computer, it is important to always include all of the summation terms in
Equation (32), since a truncated solution can be very erroneous whenever Eb/N0 is
small. Now that we have selected the (63, 51) code, the values of channel-bit rate,
Rc, and symbol rate, RS, are computed using Equations (24) and (25), with M = 8.

63 9600 11,859
51c

n     R          R
k

   = = ≈      
 channel-bits/s

2

11859 3953
3log

c
s

R            R   M
= = =  symbols/s

Calculating Coding Gain
Perhaps a more direct way of finding the simplest code that meets the specified
error performance is to first compute how much coding gain, G, would be required
in order to yield PB = 10-9 when using 8-PSK modulation alone; and then we can
simply choose from Table 3 the code that provides this performance improvement.
First, the uncoded ES/N0 that will yield an undetected error probability of PB = 10-9 is
found by writing from Equations (18) and (30):
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0 -9

2 2

22 sin
10

log log

s

E
B

EQ      
MNPP       

 M   M

 π 
    ≈ ≈ = (33)

At this low value of bit-error probability, it is valid to use Equation (16) to
approximate Q(x) in Equation (33). By trial and error (on a programmable
calculator), we find that the uncoded ES/N0 = 120.67 = 20.8 dB, and since each
symbol is made up of (log2 8) = 3 bits, the required (Eb/N0)uncoded = 120.67/3
= 40.22 = 16 dB. We know from the given parameters in this example and Equation
(12) that the received (Eb/N0)coded = 13.2 dB. Therefore, using Equation (23), the
required coding gain to meet the bit-error performance of PB = 10-9 is

G (dB)
0 uncoded

bE  =   
N

 
 
 

(dB)
0 coded

bE     
N

 −   
(dB) = 16 dB - 13.2 dB = 2.8 dB

To be precise, each of the Eb/N0 values in the above computation must correspond
to the same value of bit-error probability (which they do not). They correspond to
PB = 10-9 and PB = 1.2 × 10-10, respectively. However, at these low probability
values, even with such a discrepancy this computation still provides a good
approximation of the required coding gain. Searching Table 3 for the simplest code
that will yield a coding gain of at least 2.8 dB, we see that the choice is the (63, 51)
code, which corresponds to the same code choice that was made earlier. Note that
coding gain must always be specified for a particular error probability and
modulation type, as it is in Table 3.

Example 4: Direct-Sequence (DS) Spread-Spectrum Coded System
Spread-spectrum systems are not usually classified as being bandwidth- or power-
limited. However, they are generally perceived to be power-limited systems
because the bandwidth occupancy of the information is much larger than the
bandwidth that is intrinsically needed for the information transmission. In a direct-
sequence spread-spectrum (DS/SS) system, spreading the signal bandwidth by
some factor permits lowering the signal-power spectral density by the same factor
(the total average signal power is the same as before spreading). The bandwidth
spreading is typically accomplished by multiplying a relatively narrowband data
signal by a wideband spreading signal. The spreading signal or spreading code is
often referred to as a pseudorandom code or PN code.
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A typical DS/SS radio system is often described as a two-step BPSK modulation
process. The first step can be viewed as the modulation of a carrier wave by a
bipolar data waveform having a value +1 or –1 during each data-bit duration. In the
second step, the output of the first step is multiplied (modulated) by a bipolar
PN-code waveform having a value +1 or –1 during each PN-code-bit duration. In
reality, DS/SS systems are usually implemented by first multiplying the data
waveform by the PN-code waveform, and then making a single pass through a BPSK
modulator. However, for this example, it will be useful to characterize the modulation
process in two separate steps—the outer modulator/demodulator for the data, and the
inner modulator/demodulator for the PN code.

A spread-spectrum system is characterized by a processing gain, Gp, that is defined
in terms of the spread-spectrum bandwidth, Wss, and the data rate, R, as follows
[4]:

ss
p

WG   =  
R

(34)

For a DS/SS system, the PN-code bit has been given the name chip, and the
spread-spectrum signal bandwidth can be shown to be approximately equal to the
chip rate. Thus, for a DS/SS system, the processing gain in Equation (34) is
generally expressed in terms of the chip rate, Rch, as follows:

ch
p

R
G   = 

R
(35)

It is worth noting that some authors define processing gain to be the ratio of the
spread-spectrum bandwidth to the symbol rate. This definition separates the system
performance due to bandwidth spreading from the performance due to error-
correction coding. Since we ultimately want to relate all of the coding mechanisms
relative to the information source, we will conform to the definition for processing
gain, as expressed in Equations (34) and (35).

A spread-spectrum system can be used for interference rejection and for multiple
access (allowing multiple users to access a communications resource
simultaneously). The benefits of DS/SS signals are best achieved when the
processing gain is very large; in other words, the chip rate of the spreading (or PN)
code is much larger than the data rate. In such systems, the large value of Gp allows
the signaling chips to be transmitted at a power level well below that of the thermal
noise. At the receiver, the despreading operation correlates the incoming signal with a
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synchronized copy of the PN code, and thus accumulates the energy from multiple
(Gp) chips to yield the energy per data bit. The value of Gp has a major influence on
the performance of the spread-spectrum system application. However, we will see
that the value of Gp has no effect on the value of the received Eb/N0. In other words,
spread-spectrum techniques offer no error-performance advantage over thermal noise.
For DS/SS systems, there is no disadvantage, either. Sometimes such spread-spectrum
radio systems are employed only to enable the transmission of very small power-
spectral densities, and thus avoid the need for FCC licensing [14].

For this example, consider a DS/SS radio system that uses the same (63, 51) code
as in Example 3. However, instead of using MPSK for the data modulation, we
will use BPSK, and we will use BPSK for modulating the PN-code chips. Let the
received Pr/N0 =  48 dB-Hz, the data rate, R = 9600 bit/s, and the required
PB ≤ 10-6. For simplicity, assume that there are no bandwidth constraints. In this
example, our task is simply to determine whether the required error performance
can be achieved using the given system architecture and design parameters. In
evaluating the system, we will use the same type of transformations that were used
in the previous examples.

When we consider the relationships in transforming from data bits to channel bits
to symbols to chips, we can see the same pattern of subtle but straightforward
transformations in rates and energies as in Figures 2 and 3. The values of Rc, RS,
and Rch can now be calculated immediately, since the (63, 51) BCH code has
already been selected. From Equation (24):

63 9600    11,859
51c       nR   =   R =k

  
  

   
≈  channel-bit/s

Since the data modulation considered here is BPSK,

RS = Rc ≈ 11,859 symbol/s

and, from Equation (35), with an assumed value of GP = 1000

Rch = GP R = 1000 × 9600 = 9.6 × 106 chip/s

Since, in this example, we have been given the same Pr/N0 and the same data rate
as in Example #2, we find the value of received Eb/N0 from Equation (19) to be 8.2
dB (or 6.61). At the demodulator, we can now expand the expression for Pr/N0 in
Equation (28) as follows:
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0 0 0 0

ch
ch

0

r b c s
c s          

E EP E E  =    R  =    R   =    R   =    R   N N N NN
(36)

Corresponding to each transformed entity (data bit, channel bit, symbol, or chip)
there is a change in rate, and similarly, a reciprocal change in energy-to-noise
spectral density for that received entity. It should be apparent that Equation (36) is
valid for any such transformation when the rate and energy are modified in a
reciprocal way. There is a kind of conservation of power (or energy) phenomenon
that exists in the transformations. The total received average power (or total
received energy per symbol duration) is fixed regardless of how it is computed—on
the basis of data bits, channel bits, symbols, or chips. Thus, even though the ratio
Ech/N0 is much less in value than Eb/N0, which can be seen from Equations (36) and
(35) as follows:

0 0 0 0

ch 1 1 b

ch

r r

p p

E P 1 P E  =      =      =         
N N N G  R G NR

    
             

(37)

The despreading function (when properly synchronized) will accumulate the
energy contained in a quantity Gp of the chips, yielding the same value of
Eb/N0 = 8.2 dB, as was computed earlier from Equation (19). Therefore, the DS
spreading transformation has no effect on the error performance of an AWGN
channel [4], and thus the value of Gp will have no bearing on the resulting value of PB
in this example. From Equation (37), we can compute

0

chE
 

N
 (dB) 

0

bE
=   

N
 (dB) - GP (dB) (38)

= 8.2 dB - (10 × log10 1000) dB

=  −21.8 dB

It is interesting to note that the value of processing gain in this example (Gp= 1000)
enables the DS/SS system to operate at a value of chip energy well below the
thermal noise, with the same error performance as without spreading. Since BPSK
is the data modulation selected here, each message symbol therefore corresponds to
a single channel bit, and we can write the following:

0 0 0

51  6.61  =  5.35
63

s c bEE E k  =    =      =     
N N n N

   
   

  
× (39)
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where the received Eb/N0 = 8.2 dB (or 6.61). Out of the BPSK data demodulator,
the symbol-error probability, PB, (and the channel-bit error probability, pc) is
computed as [4]:

0

c
c E

2  Ep   =  P   =  Q 
N

 
   

(40)

Using the results of Equation (39) in Equation (40) yields the following:

Pc = Q(3.27) = 5.8 × 10-4

Finally, using this value of pc in Equation (32) for the (63, 51) double-error
correcting code yields the output bit-error probability of PB = 3.6 × 10-7. We can
therefore verify that for the given architecture and design parameters of this
example, the system does in fact achieve the required error performance.

Code Selection
Consider a real-time communication system, in which the specifications cause it to
be power-limited but there is ample available bandwidth, and the users require a
very small bit-error probability. Error-correction coding is called for. Suppose that
we were asked to select one of the BCH codes listed in Table 2. Since the system is
not bandwidth-limited, and it requires very good error performance, one might be
tempted to simply choose the most powerful code in Table 2, that is, the (127, 8)
code, capable of correcting any combination of up to 31 flawed bits within a block
of 127 code bits. Would anyone use such a code in a real-time communication
system? No, they wouldn’t. Let me explain why such a choice would be unwise.

Whenever error-correction coding is used in a real-time communication system,
there are two mechanisms at work that influence error performance. One
mechanism works to improve the performance, and the other works to degrade it.
The improving-mechanism is the coding; the greater the redundancy, the greater
will be the error-correcting capability of the code. The degrading mechanism is the
energy reduction per channel symbol or code bit (compared to the data bit). This
reduced energy stems from the increased redundancy (and faster signaling in a
real-time communication system). The reduced symbol energy causes the
demodulator to make more errors. Eventually, the second mechanism wins out, and
thus at very low code rates we see degradation. This is demonstrated in Example 5
below. Note that the degrading mechanism applies for coding only in a real-time
system (where messages cannot be delayed). For systems that can endure message



26 Designing Digital Communications Systems

delays, the tradeoff for getting the benefits of the code redundancy is delay (not
reduced symbol energy).

Example 5: Choosing a Code to Meet Performance Requirements
A system is specified with the following parameters: Pr/N0 = 67 dB-Hz, data rate
R = 106 bits/s, available bandwidth W = 20 MHz, decoded bit-error probability
PB ≤ 10-7, and the modulation is BPSK. Choose a code from Table 2 that will fulfill
these requirements. Start by considering the (127, 8) code. It appears attractive
because it has the greatest bit-error correcting capability on the list.

The (127, 8) code expands the transmission bandwidth by a factor of
127/8 = 15.875. Hence, the signaling rate of 1 Mbit/s (giving rise to a nominal
bandwidth of 1 MHz) will be expanded to 15.875 MHz by using this code. The
transmission signal is within the available bandwidth of 20 MHz, even after
allowing another 25% bandwidth expansion for filtering. After choosing this code,
we next evaluate the error performance, by following the steps outlined earlier,
which yields the following:

( )
0 0

1 67 dB 60 dB 7 dB or 5rbE P      
N N R

 = = − =  

0 0 0

8 5 0.314
127

c bsE kE E       
N N n N

   = = = =      

Since the modulation is binary, pc = PE, so that

( ) ( )
0

2 0.628 0.7936 0.2156Ec
sEp P  Q   Q  Q

N
 

= ≈ = = = 
 

Since the (127, 8) code is a t = 31 error-correcting code, we next use Equation (32)
to find the decoded bit-error probability, as follows:

( )
127

- 127-

1 32

1271 1(1- (1 0.2156) )0.2156
127

n
jj n j j

j t j
B c c

n
P       j       j    p p

j jn = + =

   
≈ = −   
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∑ ∑

Whenever pc is very small, it suffices to use only the first term, or the first few
terms in the summation. But when pc is large, as here, computer assistance is



Designing Digital Communications Systems 27

helpful. Solving the above with pc = 0.2156 yields a decoded bit-error probability
of PB = 0.05, which is a far cry from the system requirement of 10-7. Next, let’s
select a code whose code rate is close to the popular rate ½—that is the (127, 64)
code. It is not as capable as the first choice because it corrects only 10 flawed bits
in a block of 127 code bits. But watch what happens. Using the same steps as
before yields this:

0 0 0

64 5 2.519
127

s c bEE E k       
N N n N

   = = = =      

Notice how much larger the ES/N0 is here, compared to the case where the (127, 8)
code was used. This larger ES/N0 results in smaller values of pc and PB, as seen by

( ) ( )2 2.519 2.245 0.0124cp  Q   Q  = × = =
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127-
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1271 (1- 0.0124)0.0124
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j j

j
BP          j    

j=

 
≈  

 
∑

The result yields PB = 5.6 × 10-8, which meets the system requirements. From this
example, you should see that the selection of a code needs to be made in concert
with the modulation choice and the available Eb/N0. Be guided by the fact that very
high rates and very low rates generally perform poorly in a real-time
communication system. As was described earlier, this comes about because there
are two mechanisms at work: (1) an improving mechanism; more redundancy means
greater error-correcting capability, and (2) a degrading mechanism; energy reduction
per channel symbol causes the demodulator to make more errors. As the code rate is
reduced, the second mechanism eventually wins out, and thus at very low code rates
the system experiences error-performance degradation [4].

Conclusion
The goal in this article has been to review fundamental relationships used in
designing digital communication systems. First, we examined the concept of
bandwidth-limited and power-limited systems and how such conditions influence
the design. Most importantly, we focused on the definitions and computations
involved in transforming from data bits to channel bits to symbols to chips. In
general, most digital communication systems share these relationships; thus,
understanding them should enable you to apply the same concepts to other such
systems.
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